
978-1-6654-5834-4/22/$31.00 ©2022 IEEE 

Civic Centered Heuristic Early Warning System 
Fashioned using Artificial Intelligence and Internet of 

Things 
Ashish Sharma  

Department of Information Technology, College of Engineering and Computer Science 
Lebanese French University 

Erbil, Kurdistan, Iraq 
ashish.sharma@lfu.edu.krd

Abstract— Nowadays, countries are suffering from a 

significant problem of natural disasters worldwide. Natural 

disasters happen due to environmental imbalance. The 

previously developed models do not have substantial results. The 

early warning system (EWS) comprises artificial intelligence (AI) 

and the internet of things (IoT) technologies. The EWS is tracing 

the climatic/weather conditions and accordingly floats an 

intimation to humans geographically through network-connected 

mobile devices. EWS gets trained using a 2D convolution neural 

network (CNN) of deep learning (DL) algorithms on collected 

data from different weather sensors. It classifies the weather 

conditions accurately. The proposed design is an EWS prediction 

model for detecting future natural disasters by following past 

and current climatic data details. It attains 93% training 

accuracy, 90% validation accuracy, 22% training losses, and 

34% validation losses approximately. Also, to measure the 

model's performance for multiclassification on the validation 

dataset, find the precision, recall, and f1-score for each class, 

respectively. Then, calculate the accuracy, macro average (macro 

avg) and weighted average (weighted avg) on the whole testing 

dataset. All of the following results are explained in the 

classification report section. Simultaneously, this system provides 

a warning message to society geographically through IoT devices. 

Keywords— Early Warning System (EWS), Natural Disasters, 

Disaster Risk Reduction (DRR), Internet of Things (IoT), Artificial 

Intelligence (AI) 

I. INTRODUCTION 

The climate on earth suffers a lot due to the development of 
unethical infrastructure. Human beings are cutting the trees, 
polluting the rivers, pollutes the air for monetary gains. These 
day-by-day changes are the fundamental cause of global 
warming noticed worldwide. It significantly unfavourable 
weather conditions and creates severe reasons for natural 
disasters [1]. It adversely affects in excessive melting of 
glaciers and the increase in snowfall [2]. Both cases are 
harmful to life on the planet. 

India's developing country suffers from above 40 million 
hectares of land prone to natural floods. Due to a lack of 
information about natural disaster preparedness, floods have 
wreaked havoc in these communities. The mortality in 
Kedarnath, Uttarakhand, India, was caused by cloudburst 
floods. There is no system to send out alerts in advance of 
natural disasters [3].  

Human beings cannot stop natural calamities, hazards, and 
analysis of abrupt real-time weather changes. To overcome this 
problem, provide an alert to the citizens before the problem 
happens through the internet of things (IoT) or mobile devices 
geographically. In this regard, technology helps monitor and 
community awareness about upcoming mishappenings. It can 
handle through disaster risk reduction (DRR). The EWS is a 
helping system for sending warning messages to flood-affected 
regions [4], [5].  

Nowadays, the social media revolution plays a prominent 
role in rapidly spreading information to society. The 
telecommunication network is a backbone for EWS alerts. The 
short message system (SMS) extends the knowledge of the 
severity of natural hazards like a flood to readiness for 
evacuation to the nearby harmless station. The early warnings 
help save a life, environment, and worldly things [6]. 

It is research for designing an artificial intelligence-based 
EWS to secure and save lives smartly. This system works with 
minimum human intervention and aids climatic information in 
detail. It analyzes the weather forecasting variables such as 
atmospheric pressure, temperature, humidity, wind speed, and 
wind direction [7]. 

EWS facilitates information to the stakeholders like 
agriculturists, farmers, scientists, meteorologists, departments, 
disaster management teams, climatic change activists, and 
researchers. This research provides a case study of the EWS 
concept in action. The EWS is a hybrid model that combines 
elements from artificial intelligence and the Internet of Things. 
The machine learning and deep learning algorithms assist in 
training the system (or hardware) to work unnaturally 
intelligently in sharing alerts to IoT devices spatially according 
to concerned areas. 

II. PREVIOUS STUDIES 

The authors showed interest in connecting local citizens to 
spread early messages to locale and stakeholders using existing 
IoT resources and telecommunication infrastructures for better 
timely responses [4]. The authors describe an EWS prototype 
consisting of a liquid crystal display (LCD) and a light-
emitting diode (LED) to monitor the water level in a river or on 
the land in this article. If the system finds the water level in 
dangerous mode, it directly shares warnings through the global 
system for mobile (GSM) technology to the community [5]. 
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The authors examined a geographic information system 
(GIS)-based decision support system (DSS) for disaster risk 
reduction. Practiced above makes the data details perfect and 
incorporate all agencies associated with disaster administration 
services [8]. The various sensors (like rain gauges, weather 
radars, ultrasonic, and pressure) measured certain variables. 
The authors classified the weather variables monitored in real-
time while the rain fell to observe rainfall and water level 
outlay. Collecting all of the variables' real-time data from 
different sensors allows the stakeholders to save lives, the 
environment, and necessary things. However, weather 
detectors secure more coverage regions than rainfall standards. 
After all, rainfall measures are more costly and need higher 
technological implementation [9]. 

The author proposed an EWS by analyzing twelve 
environmental indicators: four pressure, five states, and three 
responses. Also did a thorough study for leading and 
concluding indicators: precipitation, vegetation covering status, 
and soil brightness with remote-sensing. The significant point 
in this method is electing the signs based on the environmental 
stipulations concerning each region. It shows the ecological 
imbalance through remote-sensing technology to collect data 
regarding rainfall, arid or semiarid regions. It was research 
conducted with the least number of intimations for EWS. 
Hence more investigation required more gauges to improve the 
research's result [10]. 

The researcher introduced an automatic weather system 
(AWS) to analyze weather variables, and ultrasonic sensors 
help read water levels. Accordingly, the EWS communicates a 
message with safe, standby, warning, and danger (flash flood) 
knowledge. The results AWS achieved 80% well, and the 
flash-flood early warning system favoured 70% [11]. In this 
study, the scholars categorized rainfall into three patterns, like 
70–160 mm, 161–250 mm, and >250mm, as low, medium, and 
high simultaneously for five successive days. Due to this, 
landslides would notice in Chittagong Hill Districts of 
Bangladesh. Here landslides EWS designed by Web-GIS 
technologies to reach the policymakers and regional people. It 
highlights constraining fake alerts. The effort mentioned above 
was co-produced by experts, social personalities, and 
stakeholders to overwhelm the deficiencies in landslide 
warning integration at the regional scale [12], [13]. 

 

Fig. 1. Early Warning System Life-cycle. 

It signified the EWS life-cycle to handle natural hazards. 
This life-cycle, see Figure-1, comprises four steps: 1. Risk 
knowledge; 2. Monitoring and warning services; 3. 
Dissemination and communication, and; 4. Response potential 
building. The authors concentrated on a clear sense and 
accurate message floating to the community. If possible, design 
a warning in local languages. It is easy to understand in a non-
well-educated society [13], [14]. 

Here authors described data collection and analysis through 
remote sensing (RS) and geographic information system (GIS) 
techniques. RS technology facilitates recognition changes on 
the ground surface effectively. The RS arrangement may 
additionally be a vital monitoring agent if significant exposure 
frequently comes at a suitable time. GIS technology favours 
data collection, analysis, and visualization for spatial surfaces. 
It helps analyze the threshold for rainfall and soil humidity 
[14]. 

Scholars described a successful development of a wireless 
sensor network, which regulates many accurate parameters that 
lead to disaster. The connection comprises a slope sensor, 
humidity sensor, temperature sensor, and soil moisture sensor. 
The sensed data was compared to the exact previously 
collected data into the Internet cloud by a GSM transmission 
medium [15]. The authors demonstrated android and website 
technologies for sending early notifications to the community 
toward saving a life, culture, environment, and worldly things 
[16]. Android devices comprise Google Map (GM) 
applications. It facilitates human beings to find harmless 
stations to evacuate themselves with necessary items. It also 
supports the stakeholders in providing needed help to the 
citizens stuck in the disaster-affected area [17]. 

III. METHODOLOGY TO DESIGN AND IMPLEMENT EWS 

MODEL 

This methodology represents a new early warning system 
(EWS), which facilitates saving the life and worldly things. 
The following method uses five steps process, such as: 
Step 1 Start the process. 
Step 2 To input weather data from multiple sensors for 

distinct locations. 
Step 3 To prepare Weather Image Classification Model by 

using deep learning neural network (DNN). 
Step 4 Display the forecast climatic conditions detail to the 

internet of things (IoT) devices for a specific location. 
Step 5 End. 

A. Input Weather Data for EWS Model 

Firstly, input the weather image dataset from the Kaggle 
website (https://www.kaggle.com/vijaygiitk/multiclass-
weather-dataset). This dataset uses to make the model perform 
correctly and classify any weather conditions accurately. The 
real-time implementation collects data from sensors, 
geographical information systems (GIS), and geostationary 
satellites. 

The Kaggle dataset specifies the different climatic 
conditions and contains 1531 labelled images. Images 
categorize into six directories as cloudy, foggy, rainy, shine, 
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sunrise, and alien-test. With these directories, it consists of one 
test.csv file for validating the label of the image. 

B. AI-based Weather Image Data Classification Model 

This paradigm is a convolution neural network (CNN), a 
deep learning model. See Figure-2, Step-2. It classifies all of 
the images accurately and predicts the weather conditions 
perfectly. This EWS model facilitates the community by 
providing early notifications regarding mishappening to the 
harmful spots. 

C. Pseudocode for Weather Image Data Classification 

Model 

The pseudocode of the proposed algorithm for a weather 
image-data classification model, such as. 

Step 1 Begin by creating a model. 

Step 2 Include all of the necessary built-in libraries, including 

TensorFlow, Keras, NumPy, Pandas, Sklearn, OS, and 

Matplotlib. 

Step 3 Gather data for the model's training and validation. 

 Specify a location for collecting image data. 

 To split up image data into distinct classes, i.e., 

TRAINING DATASET and VALIDATION DATASET, 

classify the image data into five classes, such as cloudy, 

foggy, rainy, shine, and sunrise. 

Step 4 Show the graphs in a bar chart format. 

 Plot a bar-graph for the training dataset's classification 

and a bar-graph for the validating dataset's 

classification. 

Step 5 Using the data augmentation technique, add to an 

existing dataset to produce more data. 

Step 6 CNN has created a new Weather Classification model. 

 Create a sequential model with FIVE convolution 2D 

filters, kernel-size, activation function 'relu,' and 

padding function 'same; FIVE maximum pooling sizes 

of 2D images; ONE flatten layer; THREE dense layers 

with activation function 'softmax.' 

 Summarize the model. 

Step 7 Compile the Weather Image Data Classification model 

that is just implemented. 

Step 8 Run the collected images dataset through a newly 

implemented Weather Image Data Classification 

model. 

Step 9 Validate the performance of a newly designed Weather 

Image Data Classification model by comparing it to the 

collected image dataset. 

Step 10 Plot the line graphs to show how 'Training and 

Validation Accuracy' and 'Training and Validation 

Loss' performed. 

Step 11 End. 

D. Results and Discussion for Weather Image Data 

Classification Model 

The recommended weather image-data classification model 
is a step-by-step review. It consists as: 

1. Prepare Data: At the start, require factual data to process 
further for modelling an architecture. The Kaggle data 
details provide in the initial phase of the methodology 
section. 

2. Classification of Training and Validation datasets: It 
divides into two parts after the dataset is provided: The 
Training Dataset is 80% and the Validation Dataset is 20% 
of the total. This step graphically displays the diversity of 
the splitting images dataset. The data in a bar graph chart 
is described as per group in this case. Separate data sets for 
training and validation datasets are displayed in the bar, 
such as cloudy, foggy, rainy, shine, and sunrise image 
data. Individual classifications of the Training and 
Validation Datasets can be found in Table-1. 

TABLE I.  TRAINING AND VALIDATION DATA CLASSIFICATION 

Dataset Types of images No. of images 

Training 

cloudy images 240 

foggy images 240 

rainy images 240 

shine images 200 

sunrise images 280 

Validation 

cloudy images 60 

foggy images 60 

rainy images 60 

shine images 50 

sunrise images 70 

 

3. Analysis for Performance of Model: After 
implementation, compiling, and training a weather image-
data classification model, focus on analyzing the 
performance of the same model on a split dataset.  
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Fig. 2. Training and Validation Accuracy. 

 

Fig. 3. Training and Validation Loss. 

In the above figures, see Figure-2 and Figure-3 separately 
for training and validation accuracy; training and 
validation loss. This action demonstrates the result in 
'Training and Validation Accuracy' and 'Training and 
Validation Loss.' It sequentially confers accuracy 93%, 
validation accuracy 90%, losses 22%, and validation 
losses 34% approximately. It represents no overfitting and 
underfitting  in the proposed model for weather image-
data categorization. So, it defines that the model’s 
performance is acceptable for further testing on data. 

4. Confusion Matrix: The confusion matrix represents the 
accuracy of image data prediction. Here, Figure-4 
confusion matrix shows all of the performance of the 
proposed model. On a testing data, this describes that for 
cloudy: out of four images, it predicts two images 
correctly; for foggy: out of ten shots, it indicates seven 
precisely; for rainy: out of six shots, it represents six 
accurately; for shine: out of three images, it displays three 
correctly; for sunrise: out of seven ideas, it indicates seven 
correctly. 

 

Fig. 4. Confusion Matrix. 

5. Classification Report: The classification report represents 
the accuracy of image data prediction. Here, the TABLE II 
classification report summarizes the proposed model's 
performance. The validation dataset is identical to the 
confusion matrix dataset described above. 

In this case, TP denotes True Positives, TN denotes True 
Negatives, FP denotes False Positives, and FN denotes 
False Negatives. 

Precision assesses the proportion of positive class 
predictions that are genuinely positive class predictions. 

Precision equals (TP) / (TP+FP)  (1) 

Recall is a metric that expresses the number of positive 
class predictions made from all positive examples in the 
dataset. 

Recall equals TP / (TP+FN)   (2) 

The f1-score is used to calculate the harmonic mean of 
precision and recall. The scores assigned to each class 
indicate the classifier's accuracy in classifying the data 
points within that class in comparison to all of the other 
classes. 

The F1-score is calculated in the conventional manner as 
follows:: 

F1-Score equals (2 * Precision * Recall) / (Precision + 
Recall)     (3) 

The support is the number of true response selections that 
match into that class. 

The accuracy of a weather classification model is 
calculated by dividing the total number of valid forecasts 
by the total number of dataset values, such as: 

Accuracy equals (Sum of TP of each class) / (TP + TN + 
FP + FN)     (4) 

Macro-averaging scores are the arithmetic mean of the 
precision, recall, and f1-scores for each individual class, 
such as: 
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Macro average equals (Sum of all classes precision or 
recall or f1-score values) / (Total number of classes) 

      (5) 

In case of class inequalities like different numbers of data 
for various class labels, then use weighted average or 
weighted macro-averaging score to analyze the model's 
performance for each precision, recall and f1-score 
individually. Multiply each number by its weight to obtain 
a weighted average, and then aggregate the results, such 
as: 

Weighted average = ∑ (Total number of each class data / 
Total classes dataset) * (Each class precision or recall or 
f1-score values separately)   (6) 

It is shown below in TABLE II for performance metric of 
multiclass (cloudy, foggy, rainy, shine, and sunrise) 
models with parameters like precision, recall, f1-score, 
accuracy, macro-avg and weighted-avg. 

For example, firstly calculate accuracy for cloudy class to 
predict the true information. Here, 

TP = 2; FP = 1; FN = 2; TN = 25 

from “(1)”, we get, 

Precision (cloudy dataset) = 2 / (2 + 1) => 0.6666 => 0.67 

 

from “(2)”, we get, 

Recall (cloudy dataset) = 2 / (2 + 2) => 0.5 

 

from “(3)”, we get, 

F1-score (cloudy dataset) = (2 * 0.67 * 0.5) / (0.67 + 0.5) 
=> 0.5726 

As of the above, follow the same procedure to calculate 
for other classes like foggy, rainy, shine and sunrise. For 
complete details, check for TABLE II below. 

 

from “(4)”, we get, 

Accuracy (weather classification model)  

= (2 + 7 + 6 + 3 + 7) / (4 + 10 + 6 + 3 + 7) => 25 / 30 

=> 0.83 

 

from “(5)”, we get, 

Macro average = (0.67 + 1.00 + 0.86 + 0.60 + 0.88) / 5 

=> 0.80 (for precision) 

Similarly, for recall and f1-score are 0.84 and 0.80 
simultaneously. 

 

from “(6)”, we get, 

Weighted average = {(4 / 30) * 0.67 + (10 / 30) * 1.00 + (6 
/ 30) * 0.86 + (3 / 30) * 0.60 + (7 / 30) * 0.88} 

=> 0.86 (for precision) 

Similarly, for recall and f1-score are 0.83 and 0.83 
simultaneously. 

TABLE II.  DATA CLASSIFICATION REPORT 

Classification Report 

 Precision Recall 
F1-

score 
Support 

cloudy 0.67 0.50 0.57 4 

foggy 1.00 0.70 0.82 10 

rainy 0.86 1.00 0.92 6 

shine 0.60 1.00 0.75 3 

sunrise 0.88 1.00 0.93 7 

 

accuracy   0.83 30 

macro avg 0.80 0.84 0.80 30 

weighted avg 0.86 0.83 0.83 30 

E. Receive Early Alert Notifications for Natural Disaster 

Thirdly, after analyzing the climatic behavior, this early 
warning system activates. These warnings receive on the 
internet of things (IoT) devices or mobile devices. It supports 
human life to decide before natural disasters happen and 
evacuate from dangerous areas to safe spots with worldly 
things. It provides excellent help in disaster risk reduction 
(DRR). As a proposed model, while mis-happenings will 
notice, EWS analyzes the problem geographically and warns 
the people, stakeholders, and emergency services accordingly. 
If it predicts the weather is not fruitful to the region as per 
setting the instruction, it directly connects to the mobile 
network and floats the notifications around harmful spots. 

 

Fig. 5. Disaster Risk Reduction (DRR). 
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IV. DISCUSSION ABOUT EWS MODEL 

EWS is a supervised communication to avoid old-fashioned 
care challenges for detecting natural disasters. It facilitates 
detecting the weather conditions on time and notifications to 
different authentic bodies to save a life, environment, and 
practical matters. It is a three steps process, as: Collect the 
input from relevant resources; Create an AI deep learning CNN 
model for classifying the weather conditions for accurate 
forecasting; Spread the alerts to the society to transfer 
themselves and their necessary things before a disaster happens 
in the specific region, plus provide the announcement to the 
stakeholders and emergency ser-vices to support the 
community in real-time. The means of transferring the alarms 
on IoT types of equipment use any of the services such as short 
message service (SMS) alert system, social media system 
(Facebook, Twitter, WhatsApp, so on), and geographic 
information system (GIS). 

V. CONCLUSION AND FUTURE WORK 

This practice concludes the proposed EWS for climatic 
conditions classification using a deep learning CNN sequential 
model and sharing the information on affected areas. It defines 
the model as classifying weather details correctly with great 
accuracy. After following all of the processing steps, it shows 
beautiful outcomes. This model implements using a clean 
dataset from the Kaggle website to train and validate the 
model. The solved confusion matrix explains the performance 
of the model on the test dataset very adequately. It improves 
training accuracy by 93%, validation accuracy by 90%, 
training losses by 22%, and validation losses by 34%. During 
the training and validation steps, there was no overfitting or 
underfitting report. As a result, the model's performance is 
extremely pleasing. 

In the future, this strategy will be more practical to put up a 
temporary mobile network infrastructure in unstable natural 
areas by leveraging robots technology to inform people during 
disasters. It helps more on early alerts and saves a life on the 
planet. 
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